Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration.
نویسندگان
چکیده
The ionic mechanisms by which dopamine (DA) regulates the excitability of layers V-VI prefrontal cortex (PFC) output neurons (including those that project to the nucleus accumbens) were investigated in rat brain slices using in vitro intracellular recording techniques. DA or the D1 receptor agonist SKF38393, but not the D2 agonist quinpirole, reduced the first spike latency and lowered the firing threshold of the PFC neurons in response to depolarizing current pulses. This was accomplished by enhancing the duration of a tetradotoxinsensitive, slowly inactivating Na+ current and attenuating a slowly inactivating, outwardly rectifying, dendrotoxin-sensitive K+ current. Furthermore, D1 receptor stimulation attenuated high-threshold Ca2+ spike(s) (HTS) evoked primarily from the apical dendrites of these PFC neurons. Taken together, these data suggest that D1 receptor stimulation on layers V-VI pyramidal PFC neurons: (1) restricts the effects of inputs to the apical dendrites of these neurons by attenuating the dendritic HTS-mediated amplification of such inputs; and (2) potentiates the influence of local inputs from neighboring deep layers V-VI neurons by enhancing the slowly inactivating Na+ current and attenuating the slowly inactivating K+ current. By influencing the input/output characteristics of PFC-->NAc neurons, DA may play an important role in the processes through which PFC signals are translated into action.
منابع مشابه
Contribution of Dopamine D1/5 Receptor Modulation of Post-Spike/Burst Afterhyperpolarization to Enhance Neuronal Excitability of Layer V Pyramidal Neurons in Prepubertal Rat Prefrontal Cortex
Dopamine (DA) receptors in the prefrontal cortex (PFC) modulate both synaptic and intrinsic plasticity that may contribute to cognitive processing. However, the ionic basis underlying DA actions to enhance neuronal plasticity in PFC remains ill-defined. Using whole-cell patch-clamp recordings in layer V-VI pyramidal cells in prepubertal rat PFC, we showed that DA, via activation of D1/5, but no...
متن کاملDOPAMINE D1/5 RECEPTOR-MEDIATED LTP OF INTRINSIC EXCITABILITY IN RAT PREFRONTAL CORTICAL NEURONS: Ca-DEPENDENT INTRACELLULAR SIGNALING
Prefrontal Cortex (PFC) dopamine D1/5 receptors modulate long-and short-term neuronal plasticity which may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct post-synaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term pote...
متن کاملDopamine D1/D5 receptor modulates state-dependent switching of soma-dendritic Ca2+ potentials via differential protein kinase A and C activation in rat prefrontal cortical neurons.
To determine the nature of dopamine modulation of dendritic Ca2+ signaling in layers V-VI prefrontal cortex (PFC) neurons, whole-cell Ca2+ potentials were evoked after blockade of Na+ and K+ channels. Soma-dendritic Ca2+ spikes evoked by suprathreshold depolarizing pulses, which could be terminated by superimposed brief intrasomatic hyperpolarizing pulses, are blocked by the L-type Ca2+ channel...
متن کاملInteraction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex.
The atypical antipsychotic drug clozapine effectively alleviates both negative and positive symptoms of schizophrenia via unclear cellular mechanisms. Clozapine may modulate both glutamatergic and dopaminergic transmission in the prefrontal cortex (PFC) to achieve part of its therapeutic actions. Using whole cell patch-clamp techniques, current-clamp recordings in layers V-VI pyramidal neurons ...
متن کاملDopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling.
Prefrontal cortex (PFC) dopamine D1/5 receptors modulate long- and short-term neuronal plasticity that may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct postsynaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 5 شماره
صفحات -
تاریخ انتشار 1996